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Abstract: 
The usual Data mining model is based on two parts: the first concerns the units (called here 
“individuals”), the second, contains their description by several standard variables. The 
Symbolic Data Analysis model needs two more parts: the first concerns units called 
“concepts” and the second concerns their “description”. Each concept is associated to a 
category of any categorical variable of the given data (as for example a class variable). The 
concepts are characterized by a set of properties using the initial variables called “intent” and 
by an “extent” defined by the set of individuals which satisfy these properties. These 
concepts are described by “symbolic data” which are standard categorical or numerical data 
and moreover interval, histograms, sequences of values, etc. These new kind of data allows 
keeping the internal variation of the extent of each concept. Then, new knowledge can be 
extracted from this model by new tools of Data Mining extended to concepts considered as 
new units.  Among these tools, Spatial Classification allows a graphical visualization of the 
given concepts on a grid and at different level of generalization organized by a spatial 
hierarchy or pyramid (allowing overlapping clusters). The SYR software for Symbolic Data 
Analysis is a professional software which has been developed by SYROKKO company after 
the academic SODAS software developed by two EUROPEAN projects until 2003. 
Now we summarize the pyramidal classification model and theory.  
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SPATIAL CLASSIFICATION GRAPHICAL MODEL  
 
1. INTRODUCTION 
The aim of a spatial classification is to position the units on a spatial network and to give 
simultaneously a set of structured classes of these units "compatible" with the network. We 
introduce the basic needed definitions: compatibility between a classification structure and a 
tessellation, (m, k)-networks as a case of tessellation, convex, maximal and connected subsets 
in such networks, spatial pyramids and spatial hierarchies. Like Robinsonian dissimilarities 
induced by indexed pyramids generalize ultrametrics induced by indexed hierarchies we 
show that a new kind of dissimilarities called "Yadidean" induced by Spatial Pyramids 
generalize Robinsonian dissimilarities. We focus on spatial pyramids where each class is a 
convex for a grid, and we show that there are several one-to-one correspondences with 
different kinds of Yadidean dissimilarities. These new results produce also, as a special case, 
several one to one correspondences between spatial hierarchies (resp. standard indexed 
pyramids) and Yadidean ultrametrics (resp. Robinsonian) dissimilarities. Qualities of spatial 
pyramids and their supremum under a given dissimilarity are considered. We give a 
constructive algorithm for convex spatial pyramids illustrated by an example. We show 
finally on a simple example that Spatial pyramids on symbolic data can produce a 
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geometrical representation of conceptual lattices of "symbolic objects".  
 
2. MAIN THEOREMS 
Indexed hierarchies and ultrametrics yield a one-to-one correspondence shown by Johnson[8] 
and Benzecri [2].  Diday [6] has shown a one-to-one correspondence between indexed 
clustering pyramids and Robinsonian dissimilarities which generalize the one-to-one 
correspondence between indexed hierarchies and ultrametrics. These one to one 
correspondences have been studied by several authors, for example Bertrand, Janowitz [3], 
Bertrand [4]. In order to build a clustering pyramid, several algorithms have been proposed 
by Diday [6], Aude [1] for the standard case of classical variables and by Brito [5], Rodriguez 
[9] for the symbolic data case. 
We introduce a case of tessellation called (m, k)-network. It is a grid when m = k = 4.  When 
the tessellation is reduced to a chain with edges of equal size on a straight line we say that it 
is a (2, 2)-network.  Spatial pyramids are based on a graph defined by a m/k-network for 
which each cluster of the pyramid is "convex", "maximal" or "connected". The 
"compatibility" between an order O and a dissimilarity which is expressed by a Robinsonian 
matrix ordered by O, is generalized to the "compatibility" between a dissimilarity and a grid 
M expressed by a "Yadidean matrix" "ordered" by M. "Yadidean dissimilarities" generalize 
Robinsonian dissimilarities as a Yadidean dissimilarity is a Robinsonian dissimilarity in the 
case of a (2, 2)-network. The one-to-one correspondence given in Diday [7] between a family 
of " indexed spatial pyramids" and a family of Yadidean dissimilarities is generalized to one-
to-one correspondences between several kinds of equivalence classes of indexed spatial 
pyramids and several kinds of Yadidean dissimilarities called "large", "strict", "weakly large", 
"weakly strict". We extend standard hierarchies to spatial pyramids and ultrametrics to 
Yadidean ultrametrics. Then, we show that these results lead to several kinds of one to one 
correspondences between indexed hierarchies and ultrametrics, between indexed pyramids 
and Robinsonian dissimilarities and between spatial hierarchies and Yadidean ultrametrics. 
We show that the supremum of the set of Yadidean ultrametrics lower than a given 
dissimilarity is a Yadidean dissimilarity. We give a constructive algorithm for convex spatial 
pyramids illustrated by an example. Finally, we show by a simple example that spatial 
pyramids can give a geometrical representation of a conceptual lattice. In figure 1 we give an 
example of spatial pyramid and a tool for a graphical interpretation of each level of the 
pyramid. This work has been done by the project SEVEN sponsored by the ANR “Agence 
Nationale pour la Recherche” and directed by EDF (Clamart) from 2005 to 2008, with the 
participation of the LIMSI, IINRIA, and CEREMADE. For the CEREMADE, M. Touati and 
M. Rahal have actively participated. 
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Figure 1 Graphical visualization of a spatial classification by a 3-D pyramid 

 
3. CONCLUSION 
A wide field of research is opened by extending the results already obtained in standard 
hierarchies and pyramids to spatial pyramids compatible with a grid, then, by extending these 
new results to other kinds of classes (for instance, of maximal or connected classes instead of 
convex), to other kinds of grids (as triangular or hexagonal) and to multidimensional grids. 
For instance, in the case of a cubic grid we can obtain a 3-D Yadidean dissimilarity defined 
by blocks which are 2-D Yadidean dissimilarities increasing from  the main diagonal in rows 
and columns. In that way, we can go more generally, from a n-D Yadidean dissimilarity to a 
(n+1)-D one. In the 3-D Yadidean dissimilarity case, the classes of the associated 
classification structure are volumes as they merge cells of the 3-D grid. They form a  
partitioning or an overlapping of the 3-D grid depending on the fact that the 3-D associated 
Yadidean dissimilarity is "ultrametric" or not, etc.   Many other directions remain open, such 
as how to get the closest Yadidean dissimilarity of a given dissimilarity and what is the 
statistical distribution of a quality criterion between a given dissimilarity and different kinds 
of Yadidean dissimilarity (weakly large, large, weakly strict, strict…) ?. It is possible to do a 
spatial classification of spatial units, for example, what is the three dimensional spatial 
pyramidal structure of the concepts of our brain by using as input a dissimilarity between 
their dictionary definition. What is the three dimensional spatial pyramidal structure of the 
stars of the sky by using their distances as input? 
 
References:  
Recent Books  

L. Billard, E. Diday (2006) “Symbolic Data Analysis: conceptual statistics and data Mining”. Wiley. ISBN 0-

470-09016-2. 351 pages. 

E. Diday, M. Noirhomme (editors and co-authors) (2008) “Symbolic Data Analysis and the SODAS software”  

457 Pages. Wiley. ISBN 978-0-470-01883-5. 

P. Brito, P. Bertrand, G. Cucumel, F. De Carvalho (editors) (2007).  Selected contributions in Data Analysis and 

Classification. ISBN  978  3 540 73558 8 Springer Berlin Heidelberg New York.  

Advised recent paper on the theory  
E. Diday (2008). Spatial classification. DAM (Discrete Applied Mathematics) Volume 156, Issue 8, Pages 1271. 



 4 / 4 

 

Other books and papers: 
[1] H.H. Bock, E. Diday (eds.):  Analysis of Symbolic  Data. Exploratory methods for extracting statistical 

information from complex data . Springer Verlag, Heidelberg, 425 pages, ISBN 3-540-66619-2. 

 [2] J.P. Benzecri, L'Analyse des données: la Taxinomie, Vol. 1, Dunod, Paris, 1973. 

[3] P. Bertrand, M.F. Janowitz, Pyramids and weak hierarchies in the ordinal model for clustering. Discrete 

Applied Mathematics. 122, pp. 55-81, 2002. 

[4] P. Bertrand Structural properties of pyramidal clustering. Dimacs Ser. Theor Comput. Sci. 19 35-53, 1995. 

[5] P. Brito Order structure of symbolic assertion objects. IEEE TR. on Knowledge and Data Engineering Vol.6, 

n° 5, October, 1994.  

[6] E. Diday, Orders and Overlapping clusters in pyramids. In J. De Leeuw, et al., (Eds.). Multidimensional Data 

Analysis, DSWO Press , Leiden, pp. 201-234. 1986.  

[7] E. Diday, " Spatial Pyramidal Clustering Based on a Tessellation". Proceedings IFCS'2004. Proceedings of 

the Meeting of the International Federation of Classification Societies. Illinois Institute of Technology, Chicago, 

15-18 July 2004, D. Bank and al. Editor. Springer Verlag, pp. 105-120. 2004.  

[8] E. Diday (2008) Spatial classification. DAM (Discrete Applied Mathematics) Volume 156, Issue 8, Pages 

1271-1294.  

[9] S.C. Johnson, Hierarchical clustering schemes, Psychometrika 32 pp. 241-254, 1967. 

[10] K.Pak, M.C.Rahal et E.Diday. Elagage et aide à l'interprétation symbolique et graphique d'une 

pyramide. Congrés d'extraction et gestion des connaissances, EGC 18-21 Janvier 2005 Paris, Editions Cepadues 

 
 


